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We propose a method to simulate the motion of 2D rigid particles in a viscous,
incompressible fluid. Within the arbitrary Lagrangian Eulerian framework, momen-
tum equations for both the fluid and the particles are discretized, and a coupled
variational formulation is established. By introducing an appropriate finite element
approximation, a symmetric linear system is obtained. This system is solved by an
inexact Uzawa algorithm. The main interest of such simulations lies in the average
behaviour of a high number of particles. We therefore introduced a biperiodic for-
mulation of the problem, which makes it possible to represent many-body mixtures
at a reasonable computational cost. In order to model realistic situations, an extra
term must be added to the pressure. This extra term is shown to be the lagrange mul-
tiplier associated with the vertical volume conservation constraint. We developed an
appropriate unstructured mesh generator, so that the biperiodicity of the fields can be
treated in a strong sense. The question of particle contact is addressed, and a simple
technique to overcome numerical problems is proposed. The influence of periodic
lengths is investigated through different simulations. The same case is simulated for
different sizes of the window, and the behaviour of some space-averaged quantities
is studied. c© 1999 Academic Press

Key Words:fluid-particle flows; Navier–Stokes equations; arbitrary Lagrangian
Eulerian; biperiodic.

1. INTRODUCTION

Particulate flows arise in a wide class of industrial processes. Depending on the area
of application, one can be interested in particle distribution (e.g., in lubricated transport),
rate of mixing (catalyst cracking), and average velocities (sedimentation columns). As the
number of particles actually involved in such processes is very high, and as a deterministic
description of the particle motion is not needed, the natural framework to deal with such
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problems is multiphase flow modeling. In Batchelor [1] (see also Prosperettiet al. [16]),
probability densities are introduced in order to establish equations on averaged quantities.
Depending on the situation which is studied, some models must be added in order to obtain
a close set of equations. Direct simulations of mixtures can be helpful to establish and
validate those models. Especially when the flow is linear, the space of unknowns can be
reduced to particle degrees of freedom, making it possible to simulate large numbers of
particles. For Stokesian flows, Durlofskyet al. [4] and Dratleret al. [3] present dynamic
simulations of large numbers of rigid spheres, leading to global properties of the mixture
in good agreement with measurements. Similarly, for inviscid potential flows, it is possible
to model the behaviour of high numbers of particles (see, for example, Sanganiet al.
[18]). When both viscous and inertia effects cannot be neglected, multiphase modeling
lacks suitable interaction models, as pointed out by Hu [7]. It motivated the recent research
activity on fluid-particle “full” simulations, where both particle and fluid velocities are
computed.

From the numerical point of view, particulate flows are close to free surface flows: both
the fluid velocity field and the domain in which it is defined are unknown. Such problems
motivated the development of numerous algorithms, which can be classified in two types.
The first approach is Eulerian: it is based on a fixed mesh which covers the whole domain
where the fluid may be present (see Satoet al. [19] for a presentation of this method in
the context of free surface flows). For particulate flows, Glowinskiet al. [6] developed a
fictitious domain approach. The whole domain is covered by a cartesian grid, on which
local meshes are moving, following the motion of particles. The rigid motion within each
particle is considered as a constraint which is imposed by a Lagrange multiplier.

Methods of the second type are based on a moving mesh which follows the motion of
the fluid boundary (Lagrangian behaviour). As the mesh motion within the fluid can be
defined arbitrarily, these methods are usually referred to as arbitrary Lagrangian Eulerian.
ALE methods have been applied to fluid-particle flows by Hu [7] (see also Johnsonet al.
[9] for 3D computations of spheres falling in a tube filled with liquid). Hu developed a finite
element solver in domains which are periodic in one dimension. The non-linear system
obtained by discretization of the momentum equations is solved by a Newton’s algorithm.
At each iteration of the algorithm, the non-symmetric system is solved by a GMRES method.

Following the ALE approach, we propose to apply the method of characteristics to take
into account the advection term for the fluid, so that the time discretized problem turns out
to be a generalized Stokes problem. A suitable variational formulation is then introduced,
leading to a symmetric system which involves all the unknowns. This system is solved by
a Uzawa algorithm of the conjugate gradient type. We present a new method to generate
non-uniform biperiodic unstructured meshes of domains with holes. Such meshes make it
possible to use biperiodic finite element spaces, so that it is not necessary to consider the
biperiodicity as an extra constraint.

2. NUMERICAL SCHEME

2.1. Continuous Equations

Our purpose is to compute the unsteady flow ofN identical particles of massm in a fluid
of densityρ and viscosityµ. We denote byÄ(t) the domain occupied by the fluid at time
t ∈ [0, T ], and byÄi (t) the circle of centerGi , which is the location of thei th particle. The
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external force acting on the mixture is limited to gravity. In order to eliminate the body
forces in the fluid part, we introduce the reduced pressure

p = physical pressure− hydrostactic pressure. (1)

We denote bỹm the excess mass of a particle (difference between the massm and the mass
of fluid occupying the same volume), so that the final balance between weight and buoyant
force ism̃g. The total stress tensor is

σ(x, t) = µ(∇u+ t∇u)− pI = 2µD(u)− pI .

The fluid obeys the incompressible Navier–Stokes equations inÄ(t){
ρ
(
∂u
∂t + u · ∇u

)−∇ · σ = 0,

∇ · u = 0,
(2)

while translational velocitiesV i and angular velocitiesωi of the particles satisfy

m
dV i

dt
= −

∫
0i (t)

σ · n+ m̃g, (3)

J
dωi

dt
= −

∫
0i (t)

(x−Gi )× σ · n, (4)

whereJ is the moment of inertia of a particle. The no-slip condition on the particle surface
is

u(x, t) = V i + ωi × (x−Gi ) ∀x ∈ 0i (t). (5)

The particle distribution and the fieldsu and p are supposed to be biperiodic with respect
to the computational domain, as represented in Fig. 1.

FIG. 1. Notations.
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2.2. ALE Formulation

We now introduce the arbitrary Lagrangian Eulerian formulation of this system (for more
details, see Hugheset al. [8], Hu [7], Maury [11]).

We first definect , the instantaneous velocity of the domain at timet . It is defined on the
particles by

∀x ∈ 0i , ct (x) = V i + ωi × (x−Gi ), (6)

and inside the domainÄ(t) by (for example)

1ct = 0. (7)

Note that, when the particles are circular, the velocity of the domain on particlei can be
defined simply asV i : the mesh will be allowed to slip on the particles.

The 3D field (ct (x, t), 1) can be integrated in the physical space-time domainS cor-
responding to the time interval [0,T ]. From Eq. (6), this field is tangent to the “lateral”
boundary ofS (boundary ofS excepting∂Ä0×{0} and∂ÄT ×{T}). It leads to mappings
between the different domainsÄ(t),

Ä(t1)→ Ä(t2)

x1 ∈ Ä(t1) 7→ x2 = C(x1, t1; t2) (8)

where(C(x1, t1; t), t) is the characteristic curve from(x1, t1) to (x2, t2) in S,{
d
dt [C(x1, t1; t), t ] = [ct (C), 1]

C(x1, t1; t1) = (x1, t1).
(9)

For eachτ , the ALE velocity is then defined by

uτ (x, t) = u(C(x, τ ; t), t), (10)

with x ∈Ä(τ) andC(x, τ ; t)∈Ä(t), which is equivalent to

uτ (C(x, t; τ), t) = u(x, t). (11)

The partial time derivation in time of (11) att = τ gives

∂u
∂t
= ∂uτ

∂t
+ ∂C

∂t

∣∣∣∣
t=τ
∇uτ

= ∂uτ
∂t
− cτ∇uτ . (12)

Introducing variablesuτ and pτ , the Navier–Stokes equations att = τ become{
ρ
(
∂uτ
∂t + (uτ − cτ ) · ∇uτ

)− µ1uτ +∇ pτ = 0

∇ · uτ = 0.
(13)

A first order form of the ALE Navier–Stokes equations (13), witht in the neighbourhood
of τ , will be used to discretize in time Eq. (2).
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2.3. Time Discretization

The time steptm+1− tm is denoted byδt . The nonlinear term in the momentum equation
is approximated by a method of characteristics (see Pironneauet al. [15]). The principle of
the method is the following:x being the location of a fluid particle at timetm+1= tm+ δt ,
andXm(x) being the location of this particle at the previous time steptm, the total derivative
atx is approximated by the quantity

Du
Dt
≈ u(x, tm+1)− u(Xm(x), tm)

δt
. (14)

This method can be used within the ALE framework, as shown in Maury [11]. The only
difference with the fixed domain case is that the convecting field is no longer the fluid
velocity, but the relative fluid velocityu− ct . The equations for the particles (3)–(4) are
simply discretized by a finite difference scheme.

We denote byum+1(·) and pm+1(·) approximations of the fieldsutm(·, tm+1) and
ptm(·, tm+1). Both um+1(x) and pm+1(x) are defined forx∈Äm, but correspond to the
physical timetm+1. The stress tensor at timetm+1 is denoted by

σm+1 = µ(∇um+1+ t∇um+1)− pm+1I . (15)

Let α be the reciprocal of the time stepδt . The global time discretization scheme is

αρum+1(x)− µ1um+1(x)+∇ pm+1(x) = αρum(Xm(x)) in Äm (16)

αm
(
Vm+1

i − Vm
i

) = − ∫
0m

i

σm+1 · n+ m̃g, (17)

αJ
(
ωm+1

i − ωm
i

) = − ∫
0m

i

(x−Gi )× σm+1 · n, (18)

with the constraint

um+1 = Vm+1
i + ωm+1

i × (x−Gi ), ∀x ∈ 0m
i . (19)

2.4. Variational Formulation

In this section the(m+ 1)-upperscripts are dropped,

um+1→ u pm+1→ p Vm
i → V i ωm+1

i → ωi , (20)

σm+1→ σ Äm+1→ Ä, (21)

and the inertia and body force terms are denoted by

fu(x) = αρum(Xm(x)), fV i = αmVm
i + m̃g, fωi = αJωm

i . (22)

We introduce the Hilbert spaceV consisting of all those biperiodic vector-valued functions
U such that

U = (u,V1, . . . ,VN, ω1, . . . , ωN) ∈ H1(Ä)2× R3N (23)
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and satisfying the kinematic condition (5). The spaceV is the natural space for the velocity
of the mixture.H1(Ä)2 corresponds to the 2D velocity field in the fluid part, andR3N stands
for the velocities of the particles: translational velocity (2 components for each particle),
and rotational velocity (1 for each particle).

For simplicity L2
0 (set ofL2 functions with zero mean value), which is the natural space

for the pressure, is denoted byQ. The spaceV is a Hilbert space with the scalar product

(U1,U2)V =
∫
Ä

u1 · u2+
∫
Ä

∇u1 · ∇u2+
∑

1≤i≤N

V1
i · V2

i +
∑

1≤i≤N

ω1
i ω

2
i . (24)

The system (16) becomes

αρu− µ1u+∇ p = fu in Ä (25)

αmV i = fV i −
∫
0i

σ · n, (26)

αJωi = fωi −
∫
0i

(x−Gi )× σ · n. (27)

To establish the variational formulation, we now consider a test function

Ũ = (ũ, Ṽ1, . . . , ṼN, ω̃1, . . . , ω̃N) ∈ V. (28)

Equation (25) is multiplied bỹu and integrated overÄ:

αρ

∫
Ä

u · ũ+ 2µ
∫
Ä

D(u) : D(ũ)−
∫
Ä

p∇ · ũ−
∑

1≤i≤N

∫
0i

(σ · n) · ũ =
∫
Ä

fu · ũ. (29)

As Ũ∈V verifies the relation (5), the boundary integrals in (29) can be written∫
0i

(σ · n) · ũ =
∫
0i

(σ · n) · (Ṽ i + ω̃i × (x−Gi ))

= Ṽ i ·
∫
0i

σ · n+ ω̃i

∫
0i

(x−Gi )× σ · n, (30)

so that, by Eqs. (26) and (27),∫
0i

(σ · n) · ũ = −αmV i · Ṽ i + fV i · Ṽ i − αJωi ω̃i + fωi ω̃i . (31)

Equations (25) and (31) finally lead to the global formulation: Find(U, p) ∈ V × Q such
that 

αρ
∫
Ä

u · ũ+ 2µ
∫
Ä

D(u) : D(ũ)− ∫
Ä

p∇ · ũ
+αm

∑
1≤i≤N V i · Ṽ i + αJ

∑
1≤i≤N ωi ω̃i

= ∫
Ä

fu · ũ+
∑

1≤i≤N fV i · Ṽ i +
∑

1≤i≤N fωi ω̃i ∀Ũ ∈ V,∫
Ä

p̃∇ · u = 0 ∀ p̃ ∈ Q.

(32)

The mass conservation is simply∫
Ä

p̃∇ · u = 0 ∀ p̃ ∈ Q. (33)
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2.5. Numerical Solution

We denote byVh and Qh approximation spaces forH1(Ä) and L2(Ä), satisfying the
inf-sup condition. The computations presented at the end of the paper use the so-called
mini-element: the pressure is piecewiseP1, and the velocity is the sum of a piecewiseP1

field and a linear combination of bubble functions (a bubble function associated with a
triangle is the product of the barycentric coordinates with respect to the 3 vertices, and is
zero outside the triangle). This element is known to satisfy the inf-sup condition.

Our first step is to assemble the matrices corresponding to the decoupled problem (the
kinematic condition is not taken into account). It leads to matricesA, BT , B, algebraic
analogs of the Stokes, gradient, and divergence operators, respectively. MatrixA is block-
diagonal (fluid-particles), and the submatrix ofA corresponding to the particles is diagonal.
Note thatA will contain non-zero extra diagonal terms as soon as any triangle is in contact
with 2 particles.

The approximate velocity is to be found in the subspace ofVh satisfying the kinematic
condition. The velocity is writtenu= (uÄ, u0), whereu0 contains the components of the
field associated with the vertices on the particle boundaries. The no-slip condition can then
be expressed in the algebraic form

(u0)T = P̃(V1, . . . ,VN, ω1, . . . , ωN)
T ,

or, equivalently, by

(uÄ, u0,V1, . . . ,VN, ω1, . . . , ωN)
T = P(uÄ,V1, . . . ,VN, ω1, . . . , ωN)

T , (34)

with

P =
 I O
O P̃
O I

 . (35)

The algebraic problem can then be written[
PT AP PT BT

B P O

] [
U
p

]
=
[

F
0

]
. (36)

An inexact Uzawa algorithm (see Elman and Golub [5]) is performed on the reduced
symmetric system

B P(PT AP)−1PT BT p = B P(PT AP)−1F. (37)

At each iteration of the algorithm, the systemPT APx= b is solved by a conjugate gradient
method, preconditioned by its diagonalD,

D−1/2(PT AP)D−1/2x′ = D−1/2b, (38)

with x′ = D1/2x.
The global system for pressure (37) is preconditioned by a Laplace problem with

Neuman boundary conditions.
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Remark. As the matrixA corresponds to the generalized Stokes operator with natural
boundary conditions, this technique can be immediately applied to any finite element dis-
cretization of the stokes problem, as soon as the solution method is iterative. For a direct
method, the matricesPT AP andB P should be assembled, which is not performed in the
present approach.

2.6. Remeshing

As the geometry of the domain undergoes high changes during the simulation, the mesh is
likely to degenerate. In order to avoid critical situations, the quality of the mesh (i.e., quality
of the worst triangle in the mesh) is estimated at each time step. When this quality drops
below a prescribed value, the whole domain is remeshed. As the velocity at the previous
time step is needed to take into account the advection, the velocity field defined on the old
mesh is projected onto the new one. The method we use to perform this projection is similar
to what is presented in Hu [7]. In actual computations, like those presented in this paper,
the domain is remeshed every 5 or 10 time steps.

3. BIPERIODIC SIMULATIONS

3.1. Model

The biperiodic formulation obtained by a straightforward transformation of (2)–(5) does
not represent a realistic physical situation. Indeed, as the force exerted on the system is
constant and non-zero, the velocity of the center of mass of the considered system is
unbounded: the system falls down freely. In the case of a potential flow around bubbles (no
mass), it is natural to impose a zero average velocity for the fluid, and a constant pressure
drop across the computational cell (see Sanganiet al.[17]). Such a constraint is necessary to
set up a well-posed problem. Similarly, for Stokes flows, a zero-volume-flow-rate condition
has to be prescribed by adding a backflow pressure gradient (see Pederciniet al. [14]).
In the present case, because of inertia, the problem is well-posed; only the model is not
relevant. We propose to add the fact that the “large container” which contains the mixture
does have a bottom. Even if we are only interested in the behaviour of the mixture far away
from this bottom, this condition is necessary to ensure volume conservation in the vertical
direction.

In what follows, we will use the fact that the fluid velocity fieldu (and, similarly, the corre-
sponding test functions̃u) can be extended within the rigid particle to define a divergence-
free field in the whole domain occupied by the mixture. For anyx∈Äi , u(x) is simply
defined by

u(x) = V i + ωi × (x−Gi ). (39)

We propose to change the model in the following way:

1. What we defined as the reduced pressure in Subsection 2.1 (pressure–hydrostatic
pressure) is biperiodic only up to a correction term of the “hydrostatic” typeηz, where
η is an unknown scalar which may depend on the time. We therefore have to give a new
definition of the reduced pressure. If we denote byp′ the physical pressure, this new reduced
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pressure is

p = p′ + ρgz+ ηz, (40)

which we will assume biperiodic.
2. The average vertical motion of the mixture is identically zero,∫

Ätot

u · ez = 0, (41)

whereÄtot is the domain occupied by the fluid and the particles. Note that it differs from
specifying a zero motion of the center of mass of the system, as soon as the particles and
the fluid do not have the same density.

Let us show that the new variableη introduced in Eq. (40) can be considered a Lagrange
multiplier for the constraint (41). The momentum equations for the fluid and the particles
become, respectively,

ρ
Du
Dt
−∇ · σ + ηez = 0, (42)

and

m
dV i

dt
= −

∫
0i

σ · n+mg+
∫
0i

zηn. (43)

The only difference with the variational formulation previously obtained is the addition of
a term* to the left-hand side,

* = η
∫
Ä

ez · ũ− η
∑

1≤i≤N

∫
0i

zni · ũ, (44)

whereni is the normal pointing inward the particlei . Partial integration yields

−
∑

1≤i≤N

∫
0i

ηzni · ũ = η
∑

1≤i≤N

∫
Äi

ez · ũ+ η
∑

1≤i≤N

∫
Äi

z∇ · ũ. (45)

As the test functions are divergence-free within all the rigid particles (ũ is defined within
each particle by (39)), we finally obtain

* = η
∫
Ä

ez · ũ+ η
∑

1≤i≤N

∫
Äi

ez · ũ (46)

= η
∫
Ätot

ez · ũ, (47)

which is exactly the integral defining the constraint (41), multiplied byη. The variational
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formulation of the new problem is then: Find(U, p, η)∈V × Q×R such that

αρ
∫
Ä

u · ũ+ 2µ
∫
Ä

D(u) : D(ũ)− ∫
Ä

p∇ · ũ+ η ∫
Ätot

ez · ũ
+αm

∑
1≤i≤N V i · Ṽ i + αJ

∑
1≤i≤N ωi ω̃i

= ∫
Ä

fu · ũ+
∑

1≤i≤N fV i · Ṽ i +
∑

1≤i≤N fωi ω̃i ∀Ũ ∈ V,∫
Ä

p̃∇ · u = 0 ∀ p̃ ∈ Q,

η̃
∫
Ätot

ez · u = 0 ∀η̃ ∈ R,

(48)

so thatη turns out to be a Lagrange multiplier for the new constraint (41), just asp is a
Lagrange multiplier for the incompressibility constraint. Asη is a scalar, the associated test
function η̃ is a scalar as well. Space discretization of this formulation can be performed as
in Subsection 2.5. The algebraic formulation which is obtained involves the new variable
η,  PT AP PT BT PTCT

B P O O
C P O O

U
p
η

 =
 F

0
0

, (49)

whereC is a row-matrix, which results from space discretization of
∫
Ätot

ez · u.

Remark. As the correcting pressure is the Lagrange multiplier of the homogeneous
constraint, it has no effect on the energy balance. As a matter of fact, the additional force
does not exert any global work on the mixture.

3.2. Numerical Solution

The new problem might be solved by a Uzawa algorithm on the space of Lagrange
multipliers Q×R: the velocity is eliminated, and the symmetric definite system[

B P
C P

]
(PT AP)−1[ PT BT PTCT ]

[
P
η

]
=
[

B P
C P

]
(PT AP)−1F (50)

is solved, as system (37) was, by a conjugate gradient method. Nevertheless, asη is a global
Lagrange multiplier, whereasp is a set of local ones, it suggests a decoupled solution. Indeed,
numerical experiments on the whole dual problem (50) showed bad convergence properties.
We therefore propose the following algorithm, based on the preliminary computation ofη.
Both velocity and pressure are eliminated, which leads to

C

[
PT AP PT BT

B P O

]
CT

︸ ︷︷ ︸
M

η = C

[
PT AP PT BT

B P O

] [
F
0

]
. (51)

Note that matrixM is a 1× 1 matrix. A conjugate gradient algorithm performed on system
(51) therefore converges exactly in one step. Velocity and pressure are then determined by
solving [

PT AP PT BT

B P O

] [
U
p

]
=
[

F
0

]
− CTη, (52)

which is exactly system (36) with an extra term added to the right-hand side.



BIPERIODIC FLUID PARTICLE FLOWS 335

FIG. 2. Mesh generation.

3.3. Biperiodic Mesh Generation

In order to compute the biperiodic velocity and pressure fields, a biperiodic mesh is
generated. As the domain occupied by the fluid is far from being convex, it is in general
impossible to delimit the biperiodic “window” by straight lines. In this section we present
a new method to generate a periodic or biperiodic mesh of a domain with holes.

Let us consider a distribution of particles consistent with the periodic geometry, as in
Fig. 2. The rectangleR= R1∪ R2∪ R3∪ R4 delimits the biperiodic window which is to
become the computational domain. Its vertices are denoted byA1, A2, A3, and A4. The
edges and the vertices are related by

R3 = R1+−−→A1A4, R4 = R2+−−→A2A1. (53)

Note that in case no particle intersects the rectangle, there is no need to develop a special
procedure to generate a mesh.

Strategy. The approach consists in generating a broken closed lineR̃= R̃1∪ R̃2∪ R̃3∪
R̃4 such that

• R̃ is not too far fromR;
• R̃ is biperiodic: it verifies

R̃3 = R̃1+−−→−−→A1A4, R̃4 = R̃2+−−→A2A1; (54)
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• there is no contact betweeñR and the particles.

Such a “broken rectangle” can be used to generate a biperiodic mesh compatible with the
particle distribution. The torus-type topology is then achieved by one-to-one identification
of the vertices of the 2 horizontal sides (R̃1 and R̃3), the 2 vertical sides (̃R2 and R̃4), and
the identification of the 4 corners.

Construction ofR̃. In order to generateR1, a subwindow aroundR1 is defined. The
height of this subwindowW is a few times (typically 10) the diameter of the particles.W is
filled with the actual particles by periodicity, but the particles which intersect the boundary
of W are suppressed. The next step is then to choose a pointB1 in W in the fluid part
(outside the particles), close toA1, the left end ofR1. We defineB2= B1+−−→A1A2. A mesh
of W minus the remaining particles, such thatB1 and B2 belong to the set of vertices, is
then generated in a classical way. The lineR̃1 will be defined as a connection fromB1 to B2

through the mesh.
In order to build this broken line we propose the following approach, which could be

applied to 3D problems: a scalar fieldθ is introduced, solution of the Laplace equation in
W, with uniform Dirichlet boundary conditions on each particle. We take the prescribed
value on the boundary of a particle proportional to the height of its center (the height origin
is set atR1). A similar condition is taken for the horizontal sides ofW1, and homogeneous
Neuman B.C. are prescribed on the lateral parts. Let us now consider the subset of triangles
intersecting the set{x; θ(x)= θ(B1)= θ(B2)}. It is a submesh of the initial one, it contains
B1 andB2, and either one of its top or bottom boundaries can be chosen asR̃1, provided it
is connected toB1 andB2.

A similar approach is used to build̃R2. The two remaining broken lines̃Ri are defined
by R̃3= R̃1+−−→A1A4 and R̃4= R̃2+−−→A2A1. The final broken framẽR is then R̃1∪ R̃2∪
R̃3∪ R̃4.

Remark. There are other ways to generate a broken line through a domain with obstacles.
Three advantages of the presented method are:

• In case of a non-uniform mesh, the “local” meshes are built with the same
h-distribution, so that the broken line integrates smoothly into the final non-uniform mesh.
• This method is robust, even if the solid volume fraction is high (up to 55/100).
• Although it has not yet been implemented for 3D meshes, this method is app-

licable to them, mainly because the piecewise linear surface is defined implicitly as the
boundary of a mesh, and therefore is not difficult to build.

4. PARTICLE “CONTACTS”

4.1. Introduction

This section addresses the problem encountered when two or more particles come to
near contact. Conceptually, such a situation can be handled in the framework which has
been presented, provided the finer zone between the particles is refined. Indeed, lubrication
theory ensures that the interparticle distances will not vanish. Numerical experiments based
on local mesh refinements (see Hu [7]) show good stability and robustness properties.
Nevertheless, this approach has some drawbacks:

• It is impossible to predicta priori the number of necessary refinement steps, so that
there is no control on computational costs, nor on memory requirements.
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• The time step has to be controlled and may have to be reduced drastically in order
to avoid overlapping of particles.
• The high non-uniformity of the computational mesh is harmful to the conditioning

of the numerical system to solve.

4.2. Technical Treatment

4.2.1. Principle of the method.In this section, a “cut off”-like technique is presented.
It ensures numerical stability at almost no computational cost. Although this technique
seems to act as if particle roughness were taken into account, it is not based on any proper
physical modeling. Some remarks on the underlying physics will be given in the next
section.

Let Y represent the particle configuration

Y = (G1, . . . ,GN, θ1, . . . , θN). (55)

The distance between particlesi and j is denoted by Di j , which can be considered a function
of Y. In periodic domains, the distance between 2 particles is of course the minimum of
distances between their “images” obtained by periodicity. The set of feasible states (particles
do not touch) is

3 = {Y = (Gi , θi )1≤i≤N ∈ R3N s.t. Di j > 0, ∀i, j
}
. (56)

It is clear that anyY ∈3 can be obtained in numerical simulations, even those with arbitrarily
small Di j ’s. Moreover, if the time step is too large, some particles might even overlap. As
we want to avoid the latter configurations, we propose to replace any problematicY by
another configurationYε in

3ε =
{

Y = (Gi , θi )1≤i≤N ∈ R3N s.t. Di j ≥ ε, ∀i, j
}
, (57)

whereε >0 is a fixed parameter, andYε is close toY in a certain sense. The choice of
ε is conditioned by numerical considerations: as a mesh has to be generated in the fluid
part, it is necessary to keep finite interparticle distances. The value ofε is the prescribed
lower bound of interparticle distances. This value will of course affect the computed flow,
but numerical tests showed that it exerts no significant influence as soon as it drops below
a certain limit. In all computations, the value ofε has been set to 5% of the particle
diameter.

4.2.2. Numerical implementation.In this section we present a numerical method to com-
pute a reasonableYε from a givenY, i.e., to transform a “bad” situationY /∈3ε onto a “good”
oneYε ∈3ε. As we wantYε to be close toY, it would be natural to use a projection onto3ε.
Unfortunately, as3ε is not convex, such a projection cannot be defined properly. We there-
fore propose a heuristic method to computeYε, based on the minimizing of a functional.
Let9 be the real functional defined, for any configurationY ∈R3N , by

9(Y) =
∑

Di j<ε

(Di j (Y)− ε)2. (58)

The set3ε is exactly{Y s.t.9(Y)= 0}. Yε is obtained by performing a steepest descend
algorithm on9, starting fromY.
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At each step of the steepest descent algorithm, all the distances between particles must
be estimated with accuracy, which can be very costly especially if particles are not circles.
In order to reduce the number of calls of this procedure, the whole domain is covered with
a coarse regular grid (whose step is larger than the diameter of the particle+ 2ε). Each
particle is located in this grid, and only the couples belonging to neighbouring cells are
tested. In case of periodic calculations, also the “ghost” particles, not represented in the
computational mesh, must be taken into account.

This method has shown its robustness in numerical tests. It makes possible long-time
simulations with no risk of overlapping. Furthermore, as the minimizing procedure is per-
formed on the space of all particle positions, it can handle close packed arrangements, where
some particles may be in contact with 6 other ones.

4.3. Further Prospects: Lubrication Models

In particular situations, e.g., when some particles are sticking to a wall (particle laying at
the bottom of a container), or more generally when the solid phase is high, the lubrication
forces may play a significant role on the overall behaviour of the mixture (see Dratler and
Schowalter [3] for the influence of near contact dynamics on the global viscosity of suspen-
sions). In [13], we introduced a many-body lubrication model based on a first order asymp-
totic expansion of the lubrication flow between two spheres developed by Kimet al. [10].
Although this method reproduces the physical behaviour properly in very simple cases
(e.g., single particle approaching the bottom of a container under the action of gravity), we
will not present in this paper any many-body simulation based on the coupling of the two
approaches, because we are unable to define a non-trivial test case which would illustrate
the accuracy of the coupled approach. Indeed, interparticle distances are very difficult to
measure experimentally. Furthermore, when the interparticle gap is too thin, it may lead to
film rupture, which is up to now impossible to take into account with such models.

5. NUMERICAL EXPERIMENTS

We present here 4 sets of simulations. As this direct approach is intended to lead to a better
understanding of the global behaviour of “infinite” mixtures, a special attention will be paid
to the influence of the biperiodic model on the computed flow (sets II and III). Situations are
characterized by the solid volume fraction8 and the particle Reynolds number. The latter
is defined by Rep= ρUd/µ, whereU is the maximum modulus of the fluid velocity, and
d is the particle diameter. The time step is controlled automatically in all the simulations.
The control is based on a particle CFL condition. It is chosen so that the maximum motion
of a particle between two steps is its diameter multiplied by a constant factor 0.3.

5.1. Non-circular Particles

The first set of pictures illustrates the suitability of the method to general situations: the
motion of 1000 ellipses of different sizes is computed. The volume fraction is around 1/100,
and the particle Reynolds number is 10.

Fig. 3a. Boundary of the mesh (boundary of the periodic window+ particles).
Fig. 3b. Mesh corresponding to the selected zone in Fig. 3a.
Fig. 4. Computed velocity field (detail).
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FIG. 3. (a) Mesh boundary. (b) Mesh (detail).

5.2. Periodic Model

This set of pictures illustrates the problem of the biperiodic window size. Figures 5a and 5b
correspond to a 2000 particles computation. The number of nodes of the triangulation is
about 105. The solid volume fraction8 is 15/100, the periodic length isL = 6, and Rep= 5.
We will refer to it as the large window simulation (LW). In Fig. 5a, only the particle velocities
are represented. Although it does not represent a continuous field, it gives a good overview
of the global motion of the mixture. Figure 5b shows the fluid velocity field in the zone
delimited by the square in Fig. 5a. The field which is represented is of course not biperiodic.
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FIG. 4. Velocity field (detail).
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The next pictures correspond to the very same physical situation: the size of the particles,
the solid fraction8, the fluid properties, and the body forces are unchanged. The only
difference is the size of the window, which is reduced to the zoom represented in the
previous figure (4 times smaller,L = 1.5). The number of particles is now 2000/16= 125.
We will call it the small window simulation (SW).

The influence of the biperiodicity constraint already appears in the velocitiy fields
(Figs. 5a and 6a). The large structures observed in the LW simulation can obviously not
develop in the SW.

The better way to estimate the suitability of the model would consist in extracting a
subdomain 1.5× 1.5 out of the large domain 6× 6 and compare the behaviour of the
mixture to the behaviour obtained with the 1.5× 1.5 direct biperiodic simulation. Such a
comparison cannot be done straightforwardly, because8 is likely to vary in the artificial
subdomain. For example, the kinetic energy of the solid phase will undergo a jump as soon
as a new particle comes into the subdomain. This problem should be overcome in the future,
either by introducing more sophisticated filters which take into account the variations of8,
or by increasing the number of particles.

We will limit here the analysis of those simulations to some various kinds of kinetic energy
which can be associated with particle velocities. For both simulations, we represent the total
kinetic energy of the solid phaseEtot, the kinetic energy associated with the mean velocity
of the solid phaseEmacro, and the kinetic energy of a single particleEsingle. Those quantities
are scaled in such a way that a constant and uniform motion of the set of particles would
lead to three identical values. Those functions of time are represented in Figs. 7a and 7b.

First, an important remark can be made for both simulations. There is a huge relative
difference betweenEtot andEmacro, which expresses the fact that the motion is completely
different from a uniform translation. The quantityEtot− Emeancan be seen as a temperature
of the solid phase. In the present situation, one can consider that most of the potential energy
deteriorates into viscous dissipation and particle temperature.

Considering now the differences between the two graphs, it is clear that the total kinetic
energy behaves more steadily in the LW simulation, as the next set of simulations will
confirm.

Finally, the energetic history of a single particle seems to be dominated by characteristic
frequencies varying from a case to the other. Indeed, high frequencies which dominate in
SW are still observable in LW but are no longer predominating. A systematic study of this
phenomenon still has to be performed.

5.3. Global Steady State

The next set of figures addresses the following question: Does the mean flow behave
steadily if the window size is large enough? A given set of physical parameters are chosen,
and three simulations are performed on different window sizes. The value of8 is 14/100
and the particle Reynolds number is Rep= 4. The evolution of averagex- andz-velocities
of the fluid and the particles is represented in Figs. 8a–8c. Figures 9a–9c show the time-
derivatives of the different energies: kinetic, potential, dissipated, and the sum of them all.
The singularities appearing in the kinetic energy curve are purely numerical; they correspond
to time steps at which a remeshing has been performed. A better remeshing-projection
scheme has to be developed. Nevertheless, those singularities seem to be localized in time,
and they do not prevent us from analyzing the kinetic energy evolution.
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FIG. 5. (a) Particle velocity (N= 2000). (b) Fluid velocity (zoom).



BIPERIODIC FLUID PARTICLE FLOWS 343

FIG. 6. (a) Particle velocity (N= 125× 16). (b) Fluid velocity.
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FIG. 7. (a) Kinetic energies,N= 125. (b) Kinetic energies,N= 2000.

The first observation lies in the time averaged quantities. All quantities oscillate around a
constant value which does not depend significantly on the window size. The small window
simulation appears to be sufficient to predict the mean sedimentation velocity for example,
provided a time average is performed.
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FIG. 8. Mean velocities (a)N= 50. (b)N= 200. (c)N= 800.

Second, the flow seems to stabilize globally as the periodic length is increasing. Never-
theless, it is to be noticed that, even for the highest number of particles (N= 800), some
fluctuations can still be observed at some times of the computation (see, for example, the
time derivative of kinetic energy forN= 800 around timet = 50). It must be added that in
all the long-time simulations we performed, such phenomena occurred. Indeed, for large
periodic lengths, average quantities are almost always constant, but undergo high pertur-
bations at certain times. Those perturbations can be associated with a special pattern of the
mixture flow: a large eddy develops all over the computational domain, increasing global
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FIG. 9. Energy balance (a)N= 50. (b)N= 200. (c)N= 800.

kinetic energy. This phenomenon might be due to the biperiodicity of the domain. Indeed,
as soon as many particles constitute an aggregate whose size is close to the vertical periodic
length, this aggregate has to be considered with all its periodic images: it acts like a vertical
chain of macro-bodies. No significant force is exerted by the fluid on such a vertical chain,
so that the mean velocity of the aggregate increases, inducing a macro-eddy on the com-
putational domain. In real flows, it is known that such a vertical configuration is not stable.
Any vertical chain tends to collapse before it reaches a high velocity. To the contrary, in our
computations, the vertical chainis stable, because the periodicity prevents the chain from
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collapsing. Some numerical tests still have to be performed to verify this explanation. If it
is valid, those phenomena should disappear as soon as the gravity acts in a direction which
is no longer a direction of periodicity.

5.4. Global Interaction Force

As a first step toward general models, we shall finally present an example of what the
biperiodic direct approach can provide. We will concentrate on a single relation on which
most two-phase macroscopic models are based, namely the dependency between interaction
force and relative velocity.

5.4.1 Space-time averaging.The fluid particle interaction force is not computed ex-
plicitly in the algorithm. In order to avoid extra computations of boundary integrals, we
propose here a simple way to estimate the mean interaction force and to relate it with the
mean relative velocity.

Let us consider a given situation (size of the particles, densities, viscosity, solid fraction).
Let V̄f be the mean (space averaged) vertical velocity of the fluid,V̄ the mean vertical
velocity of the particles (average over all of them), andF̄ the mean force exerted by the
fluid per particle. Our purpose in this section is to investigate the relation between the
time-averaged quantities〈F̄〉 and〈V̄ − V̄f 〉.

For any value of the gravity modulus|g|, the mean vertical velocitȳV of the parti-
cles (average over all of them) can be represented as a function of time, as in the set of
Figs. 8a–8c. As we previously noticed, after a transitory phase, this quantity oscillates
around a constant value. This function of time can be averaged over a few periods of oscil-
lation to give a good representation of the mean velocity〈V̄〉. Besides, when the system has
reached a pseudo steady state, the kinetic energy oscillates around a constant value, so that
hydrodynamic forces balance exactly (up to oscillating terms) the weight of the particles,
which is known,

〈F̄〉 = −mg. (59)

Furthermore, as the mean vertical velocity of the mixture is zero,

8〈V̄〉 + (1−8)〈V̄f 〉 = 0, (60)

so that the mean relative velocity can be expressed

〈V̄ − V̄f 〉= 1

(1−8) 〈V̄〉. (61)

5.4.2. Numerical simulations.Using Eqs. (59) and (61), we can now associate with any
long-time simulation (for which|g| and〈V̄〉 are known) a point in therelative velocity—
interaction forceplane. We present here 3 sets of simulations, corresponding to 3 different
values of8: 3.10−3, 0.112, and 0.28(N= 1, N= 40, andN= 100, respectively).

The periodic lengthL = 1 is the same for all simulations, the particle radius is 0.03,
and the viscosity of the fluid is 5.10−4. The particle Reynolds number depends of course
on the prescribed gravity. It varies between 5 and 360. Figures 10a–10c show the velocity
fields corresponding to Rep= 5, Rep= 140, and Rep= 360. Although it is questionable to
represent non-divergence free fields, we chose to represent the fluid velocity relative to the
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FIG. 10. (a) Relative velocity,N= 40, Rep= 10. (b) Relative velocity,N= 40, Rep= 140 (detail). (c) Rela-
tive velocity,N= 40, Rep= 360 (detail).
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FIG. 10—Continued

mesh velocity, i.e.,u− c, because they illustrate more properly the differences between the
Stokes flow (Rep= 5) and the Navier–Stokes flows (Rep= 140 and Rep= 360).

For each set of simulation (i.e., for each value of8), the curve

V̄ − V̄f 7→ 〈F̄〉 (62)

is plotted in a log–log scale (see Fig. 11). As indicated in the previous section,〈F̄〉 represents
an interaction force per particle. Figure 11 therefore shows that the force does not depend
on the mean relative velocity only, but also on the solid fraction. As8 increases, the force
corresponding to a given velocity increases as well. It can be explained by considering
the type of the flow around the particles. In the case of a dilute suspension, the flow
around a particle is close to what it would be with a single particle in a infinite domain of
fluid. As8 reaches high values, the solid phase acts more like a porous medium: locally,
the predominating phenomenon is a Poiseuille-like flow through inter-particle gaps. The
latter phenomenon induces high viscous forces, which explains the fact that the force
corresponding to concentrated suspension (8= 0.28, N= 100 in Fig. 11) can be one order
of magnitude higher than the force corresponding to dilute suspension (8= 0.003, N= 1).

Those curves confirm the non-suitability of trivial interaction models (models based on
interaction forces for a single particle) as soon as the suspension can no longer be considered
dilute.

Remark. The relation which we obtain numerically results from a time averaging over
a characteristic timeT . It is therefore relevant only to model macroscopic phenomena with
characteristic time much greater thanT .



350 B. MAURY

FIG. 11. Interaction force versus relative velocity, log–log scale.

6. CONCLUSION

We presented a method to simulate the motion of particles in a viscous fluid. The main
features of this method are:

• The advection term in the momentum equation for the fluid is taken into account
by a method of characteristics. The time-discretized problem is then a generalized Stokes
problem. As the resulting system is symmetric, efficient methods like the preconditioned
conjugate gradient method can be used to compute velocity and pressure.
• This method is applicable to simulations in biperiodic domains. An extra unknown

was introduced in order to take into account the vertical volume conservation. This new
unknown plays the role of an extra pressure gradient, and it was proved it is a Lagrange
multiplier for the vertical conservation constraint.
• A biperiodic mesh is built each time it is needed. As the computational mesh is

biperiodic, periodic boundary conditions are simply prescribed by working on suitable
finite element spaces.
• Numerical problems usually encountered in near-contact situations are suppressed

by using a simple “cut-off”-like technique.

This method exhibits good stability properties, which permits long-time simulations of
many-body motions (up to 5000 particles were simulated with this method). It presents good
agreement with results obtained by other approaches. Furthermore, the computed energy
balance reproduces a physically admissible behaviour. As experiments deal with spherical
particles only (3D flow), strict validations based on them are unfortunately not possible for
this 2D model.
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The new capability to handle biperiodic Navier–Stokes flows makes it possible to study
the long-time behaviour of mixtures with constant solid volume fraction, without boundary
effects. Although the limits of biperiodic models still have to be established with more accu-
racy, this tool provides a promising way to investigate fluid-particle interaction phenomena.
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