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We propose a method to simulate the motion of 2D rigid particles in a viscous,
incompressible fluid. Within the arbitrary Lagrangian Eulerian framework, momen-
tum equations for both the fluid and the particles are discretized, and a coupled
variational formulation is established. By introducing an appropriate finite element
approximation, a symmetric linear system is obtained. This system is solved by an
inexact Uzawa algorithm. The main interest of such simulations lies in the average
behaviour of a high number of particles. We therefore introduced a biperiodic for-
mulation of the problem, which makes it possible to represent many-body mixtures
at a reasonable computational cost. In order to model realistic situations, an extra
term must be added to the pressure. This extra term is shown to be the lagrange mul-
tiplier associated with the vertical volume conservation constraint. We developed an
appropriate unstructured mesh generator, so that the biperiodicity of the fields can be
treated in a strong sense. The question of particle contact is addressed, and a simple
technique to overcome numerical problems is proposed. The influence of periodic
lengths is investigated through different simulations. The same case is simulated for
different sizes of the window, and the behaviour of some space-averaged quantities
is studied. (© 1999 Academic Press

Key Words:fluid-particle flows; Navier—Stokes equations; arbitrary Lagrangian
Eulerian; biperiodic.

1. INTRODUCTION

Particulate flows arise in a wide class of industrial processes. Depending on the :
of application, one can be interested in particle distribution (e.g., in lubricated transpc
rate of mixing (catalyst cracking), and average velocities (sedimentation columns). As
number of particles actually involved in such processes is very high, and as a determin
description of the particle motion is not needed, the natural framework to deal with st

325

0021-9991/99 $30.00
Copyright(© 1999 by Academic Press
All rights of reproduction in any form reserved.
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problems is multiphase flow modeling. In Batchelor [1] (see also Prospeteiti[16]),
probability densities are introduced in order to establish equations on averaged quant
Depending on the situation which is studied, some models must be added in order to ok
a close set of equations. Direct simulations of mixtures can be helpful to establish
validate those models. Especially when the flow is linear, the space of unknowns car
reduced to particle degrees of freedom, making it possible to simulate large nhumber
particles. For Stokesian flows, Durlofsky al. [4] and Dratleret al. [3] present dynamic
simulations of large numbers of rigid spheres, leading to global properties of the mixt
in good agreement with measurements. Similarly, for inviscid potential flows, it is possil
to model the behaviour of high numbers of particles (see, for example, Sagigahi
[18]). When both viscous and inertia effects cannot be neglected, multiphase mode
lacks suitable interaction models, as pointed out by Hu [7]. It motivated the recent reses
activity on fluid-particle “full” simulations, where both particle and fluid velocities are
computed.

From the numerical point of view, particulate flows are close to free surface flows: bc
the fluid velocity field and the domain in which it is defined are unknown. Such probler
motivated the development of numerous algorithms, which can be classified in two tyy
The first approach is Eulerian: it is based on a fixed mesh which covers the whole don
where the fluid may be present (see Satal. [19] for a presentation of this method in
the context of free surface flows). For particulate flows, Glowirldl. [6] developed a
fictitious domain approach. The whole domain is covered by a cartesian grid, on wh
local meshes are moving, following the motion of particles. The rigid motion within eac
particle is considered as a constraint which is imposed by a Lagrange multiplier.

Methods of the second type are based on a moving mesh which follows the motior
the fluid boundary (Lagrangian behaviour). As the mesh motion within the fluid can
defined arbitrarily, these methods are usually referred to as arbitrary Lagrangian Euler
ALE methods have been applied to fluid-particle flows by Hu [7] (see also Jolatsin
[9] for 3D computations of spheres falling in a tube filled with liquid). Hu developed a finit
element solver in domains which are periodic in one dimension. The non-linear syst
obtained by discretization of the momentum equations is solved by a Newton’s algoritt
Ateach iteration of the algorithm, the non-symmetric system is solved by a GMRES meth

Following the ALE approach, we propose to apply the method of characteristics to tz
into account the advection term for the fluid, so that the time discretized problem turns
to be a generalized Stokes problem. A suitable variational formulation is then introduc
leading to a symmetric system which involves all the unknowns. This system is solved
a Uzawa algorithm of the conjugate gradient type. We present a new method to gene
non-uniform biperiodic unstructured meshes of domains with holes. Such meshes ma
possible to use biperiodic finite element spaces, so that it is not necessary to conside
biperiodicity as an extra constraint.

2. NUMERICAL SCHEME

2.1. Continuous Equations

Our purpose is to compute the unsteady floviNaflentical particles of mass in a fluid
of densityp and viscosityu. We denote by (t) the domain occupied by the fluid at time
t €[0, T], and by (t) the circle of cente6;, which is the location of theth particle. The
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external force acting on the mixture is limited to gravity. In order to eliminate the boc
forces in the fluid part, we introduce the reduced pressure

p = physical pressure hydrostactic pressure. (1)
We denote byh the excess mass of a particle (difference between the massl the mass
of fluid occupying the same volume), so that the final balance between weight and buo
force ismg. The total stress tensor is

o(X, 1) = u(Vu+'vu) — pl = 2uD(u) — pl.

The fluid obeys the incompressible Navier—Stokes equatiofgtin

p(®+u-Vu)—V.0=0,
2
V.u=0,
while translational velocitie¥; and angular velocities; of the particles satisfy

dv; / ~

m— = — o - N+ mg, 3
dt r
dw;

J— = — X—=Gj) xo-n, 4)
dt O

whereJ is the moment of inertia of a particle. The no-slip condition on the particle surfa
is

ux,t) =V +w x X—Gj) Vx e I (1). (5)

The particle distribution and the fieldsand p are supposed to be biperiodic with respec
to the computational domain, as represented in Fig. 1.

> P

FIG. 1. Notations.
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2.2. ALE Formulation

We now introduce the arbitrary Lagrangian Eulerian formulation of this system (for mo
details, see Hughest al.[8], Hu [7], Maury [11]).

We first definec;, the instantaneous velocity of the domain at timk is defined on the
particles by

vxeli, X)) =Vi+taoxX-Gj), (6)
and inside the domaif2 (t) by (for example)
Ac = 0. (7)

Note that, when the particles are circular, the velocity of the domain on pairticla be
defined simply a¥;: the mesh will be allowed to slip on the particles.

The 3D field €:(x,t), 1) can be integrated in the physical space-time donSagor-
responding to the time interval [0,]. From Eg. (6), this field is tangent to the “lateral
boundary ofS (boundary ofS exceptingd2° x {0} anddQ" x {T}). It leads to mappings
between the different domaigs(t),

QM) — Q1)
X1 € Q(t1) = X2 = C(Xg, t1; 1) 8)

where(C(xy, t1; t), t) is the characteristic curve frofxy, t1) to (xp, t2) in S,

{;‘t[C(xl, ti; t),t] = [a(C). 1] @
C(x1, t1; t1) = (Xg, t).
For eachr, the ALE velocity is then defined by
U (X, 1) = u(C(x, 7; 1), 1), (10)
with x € Q(7) andC(x, t;t) € Q(t), which is equivalent to
U (C(x, t; 7), 1) = u(x, t). (11)
The partial time derivation in time of (11) &t= t gives
ou du, 0aC
—=——"+—_| Vu,
at ot at |,
L (12)
~ o oV
Introducing variablesi, and p,, the Navier—Stokes equationstat t become
au
p(5¢ + U —¢C)-VUy) —uAu, +Vp, =0
(% ) 5
V-u,=0.

A first order form of the ALE Navier—Stokes equations (13), wiih the neighbourhood
of t, will be used to discretize in time Eqg. (2).
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2.3. Time Discretization

The time step™* — t™ is denoted byt. The nonlinear term in the momentum equation
is approximated by a method of characteristics (see Pironetegl15]). The principle of
the method is the followingk being the location of a fluid particle at tim@&+1 =t™ 4+ st,
andX™(x) being the location of this particle at the previous time $t&he total derivative
atx is approximated by the quantity

Du _ u(x, t™1) —u(XM(x), t™)
Dt 3t '

(14)

This method can be used within the ALE framework, as shown in Maury [11]. The or
difference with the fixed domain case is that the convecting field is no longer the flt
velocity, but the relative fluid velocity — ¢;. The equations for the particles (3)—(4) are
simply discretized by a finite difference scheme.

We denote byu™1(.) and p™(.) approximations of the fieldsin(-, t™*) and
pen (-, t™1), Both u™1(x) and p™(x) are defined forx € Q™, but correspond to the
physical timet™**. The stress tensor at tint&+* is denoted by

O.m+l — /L(Vum+1 + tvum+l) _ pm+1| . (15)

Let @ be the reciprocal of the time stép. The global time discretization scheme is

apu™r () — p AU + V™) = apu™(X"(x)) in Q" (16)
rp

ad(@™ —o) =— [ xX-Gj)xo™.n, (18)
r

with the constraint
U™ = v oM™ (x— Gp),  vxelM (19)
2.4. Variational Formulation
In this section thém + 1)-upperscripts are dropped,

u™l oy pMl > p VMV, o™t — w, (20)

R Q"M - Q, (22)

Gm

and the inertia and body force terms are denoted by

fu¥) = apu™(X"(x)),  fvi =amV"+1ng,  f,

=aJo. (22)

We introduce the Hilbert spadéconsisting of all those biperiodic vector-valued functions
U such that

U=@,Vq,...,VN, 01, ...,0n) € HY(Q)? x R3N (23)
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and satisfying the kinematic condition (5). The sp&ds the natural space for the velocity
of the mixture.H(£2)2 corresponds to the 2D velocity field in the fluid part, &t stands
for the velocities of the particles: translational velocity (2 components for each particl
and rotational velocity (1 for each particle).

For simplicity L3 (set ofL2 functions with zero mean value), which is the natural spac
for the pressure, is denoted kY. The spacé/ is a Hilbert space with the scalar product

(UL, U?)y =/ ul.u2+/ vul-vuwi 4+ > VEVEE > wlef. (24)
Q Q 1<i<N 1<i<N

The system (16) becomes

apU — puAu+Vp =", in Q (25)
amV; = fy; —/ o-n, (26)

I
aJw =, — | X=Gj) xo-n. (27)

T

To establish the variational formulation, we now consider a test function

U:(G,\71,...,\7N,c7)1,...,c7)N)eV. (28)

Equation (25) is multiplied byi and integrated ove®:

ap/u-ﬁ—i—Zu/D(u):D(ﬁ)—/pV~D— > (o-n).ﬁ=/fu.a. (29)
Q Q Q Iy Q

1<i<N

As U e V verifies the relation (5), the boundary integrals in (29) can be written
/F_(U~n)~ﬁ=/r_(0~n)~(\71 +ai x (X—=Gi))
:Vi-/r_a-nﬂ:)i r_(x—Gi)xa.n, (30)
so that, by Egs. (26) and (27),

(o-n)-li=—amV; -V +fy; - Vi —adwidy +fu, ;. (31)
I

Equations (25) and (31) finally lead to the global formulation: Riddp) € V x Q such
that

ap [qu-U+2u [ D) :D®@) — [, pV -
+ale§i§NVi Vi+al ElgiEN w; O
= fofu 0+ N fvi Vi+ XN fad  VOeV,
fo)V-u=0 vp e Q.

The mass conservation is simply

/ﬁV-u:O Vpe Q. (33)
Q

(32)
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2.5. Numerical Solution

We denote by, and Qp approximation spaces fdd 1(2) and L2(), satisfying the
inf-sup condition. The computations presented at the end of the paper use the so-c
mini-element: the pressure is piecewRg and the velocity is the sum of a piecewiBé
field and a linear combination of bubble functions (a bubble function associated witl
triangle is the product of the barycentric coordinates with respect to the 3 vertices, an
zero outside the triangle). This element is known to satisfy the inf-sup condition.

Our first step is to assemble the matrices corresponding to the decoupled problem
kinematic condition is not taken into account). It leads to matrise8T, B, algebraic
analogs of the Stokes, gradient, and divergence operators, respectively. Mesttikock-
diagonal (fluid-particles), and the submatrixsa€orresponding to the particles is diagonal.
Note thatA will contain non-zero extra diagonal terms as soon as any triangle is in cont
with 2 particles.

The approximate velocity is to be found in the subspacée,dfatisfying the kinematic
condition. The velocity is writtetni = (ug, ur), whereur contains the components of the
field associated with the vertices on the particle boundaries. The no-slip condition can't
be expressed in the algebraic form

r)" =P(V1.....Vy.01.....0n),
or, equivalently, by
(UQ7UF’V1’""VN7a)17"‘7wN)T:P(UQ’V:L’""VN?Q)]J"‘7a)N)T7 (34)
with
I O
P=|0 P|. (35)
O |

The algebraic problem can then be written

T T RT
PTAP PTBT] U] _[F] (36)
BP @ p 0
An inexact Uzawa algorithm (see Elman and Golub [5]) is performed on the reduc
symmetric system

BP(PTAP) 'P"BTp=BP(PTAP)"'F. (37)

At each iteration of the algorithm, the systét APx = b is solved by a conjugate gradient
method, preconditioned by its diagoriaJ

D Y2(PTAP)D ¥2x' = D ¥/?p, (38)
with x’ = D¥/2x.

The global system for pressure (37) is preconditioned by a Laplace problem w
Neuman boundary conditions.
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Remark. As the matrixA corresponds to the generalized Stokes operator with natur
boundary conditions, this technique can be immediately applied to any finite element
cretization of the stokes problem, as soon as the solution method is iterative. For a di
method, the matriceB™ AP and B P should be assembled, which is not performed in the
present approach.

2.6. Remeshing

As the geometry of the domain undergoes high changes during the simulation, the me
likely to degenerate. In order to avoid critical situations, the quality of the mesh (i.e., qual
of the worst triangle in the mesh) is estimated at each time step. When this quality dr
below a prescribed value, the whole domain is remeshed. As the velocity at the previ
time step is needed to take into account the advection, the velocity field defined on the
mesh is projected onto the new one. The method we use to perform this projection is sin
to what is presented in Hu [7]. In actual computations, like those presented in this pa|
the domain is remeshed every 5 or 10 time steps.

3. BIPERIODIC SIMULATIONS

3.1. Model

The biperiodic formulation obtained by a straightforward transformation of (2)—(5) do

not represent a realistic physical situation. Indeed, as the force exerted on the syste
constant and non-zero, the velocity of the center of mass of the considered systel
unbounded: the system falls down freely. In the case of a potential flow around bubbles
mass), it is natural to impose a zero average velocity for the fluid, and a constant pres
drop across the computational cell (see Sangtali[17]). Such a constraint is necessary to
set up a well-posed problem. Similarly, for Stokes flows, a zero-volume-flow-rate conditi
has to be prescribed by adding a backflow pressure gradient (see PedewddifiL4]).
In the present case, because of inertia, the problem is well-posed; only the model is
relevant. We propose to add the fact that the “large container” which contains the mixt
does have a bottom. Even if we are only interested in the behaviour of the mixture far a\
from this bottom, this condition is necessary to ensure volume conservation in the vert
direction.

In what follows, we will use the fact that the fluid velocity fieldand, similarly, the corre-
sponding test functiond) can be extended within the rigid particle to define a divergence
free field in the whole domain occupied by the mixture. For &my<;, u(x) is simply
defined by

uxX) =Vi + o x (X—Gj). (39)

We propose to change the model in the following way:

1. What we defined as the reduced pressure in Subsection 2.1 (pressure—hydro:
pressure) is biperiodic only up to a correction term of the “hydrostatic” typenvhere
n is an unknown scalar which may depend on the time. We therefore have to give a 1
definition of the reduced pressure. If we denotgbthe physical pressure, this new reducec
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pressure is
p=p +p9z+ 1z (40)

which we will assume biperiodic.
2. The average vertical motion of the mixture is identically zero,

/ u-e,=0, (41)
Qiot

whereQyq is the domain occupied by the fluid and the particles. Note that it differs fro
specifying a zero motion of the center of mass of the system, as soon as the particles
the fluid do not have the same density.

Let us show that the new variabieintroduced in Eq. (40) can be considered a Lagrang
multiplier for the constraint (41). The momentum equations for the fluid and the partic
become, respectively,

Du

and

m%:—/o-n+mg+/znn. (43)
dt Fi Fi

The only difference with the variational formulation previously obtained is the addition:
aterm* to the left-hand side,

*:n/e-l]—n zn; - G, (44)
QZ Z |

1<i<N T

wheren; is the normal pointing inward the partidlePartial integration yields

_Z/rinzni.lj:nZ/Qiez.ﬂ+772/izv-fl. (45)

1<i=<N 1<i<N 1<i<N

As the test functions are divergence-free within all the rigid partidies ¢lefined within
each particle by (39)), we finally obtain
/ e -0 (46)

" :,,/ez.0+,7 3
Q
:n/ &0, (47)
Qlot

1<i<N
which is exactly the integral defining the constraint (41), multipliedybyhe variational
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formulation of the new problem is then: Firid, p, n) € V x Q x R such that

ap fqu-042u [oDW) :D@) — [opV-TU+n [, €-0
+amy iy Vi Vi +ad D 1<i<n @il
= [ofu 0+ Vit Snfe@®  YOeV, (48)
JoPV-u=0 VvpeQ
ﬁfgmez-u=0 Vi € R,

so thatn turns out to be a Lagrange multiplier for the new constraint (41), jugi Bsa

Lagrange multiplier for the incompressibility constraint.As a scalar, the associated test
function7 is a scalar as well. Space discretization of this formulation can be performed
in Subsection 2.5. The algebraic formulation which is obtained involves the new varia

1,

PTAP P'BT PTCT] [U F
BP O o pl=1{0], (49)
cCP 0 o 0 0

whereC is a row-matrix, which results from space discretizatiorfof e, - u.

Remark. As the correcting pressure is the Lagrange multiplier of the homogeneo
constraint, it has no effect on the energy balance. As a matter of fact, the additional fc
does not exert any global work on the mixture.

3.2. Numerical Solution

The new problem might be solved by a Uzawa algorithm on the space of Lagrar
multipliers Q x R: the velocity is eliminated, and the symmetric definite system
[ BP

T 4 pTrT pT~T7| P| _ |BP
CP](P AP)"[P'B PC]{U}_{

CP} (PTAP)"F (50)

is solved, as system (37) was, by a conjugate gradient method. Neverthelgissa gtobal
Lagrange multiplier, wheregsis a set of local ones, it suggests a decoupled solution. Indee
numerical experiments on the whole dual problem (50) showed bad convergence propel
We therefore propose the following algorithm, based on the preliminary computation of
Both velocity and pressure are eliminated, which leads to

PTAP P'BT] ; PTAP P'BT][F
C[BP o }C n_C{BP O Ho}‘ (51)

M

Note that matrixM is a 1x 1 matrix. A conjugate gradient algorithm performed on systen
(51) therefore converges exactly in one step. Velocity and pressure are then determine
solving

PTAP P'BT][U F
e Y- e

which is exactly system (36) with an extra term added to the right-hand side.
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FIG. 2. Mesh generation.

3.3. Biperiodic Mesh Generation

In order to compute the biperiodic velocity and pressure fields, a biperiodic mesf
generated. As the domain occupied by the fluid is far from being convex, it is in gene
impossible to delimit the biperiodic “window” by straight lines. In this section we presel
a new method to generate a periodic or biperiodic mesh of a domain with holes.

Let us consider a distribution of particles consistent with the periodic geometry, as
Fig. 2. The rectangldR = R; U R, U Rz U R4 delimits the biperiodic window which is to
become the computational domain. Its vertices are denotefl;by,, Az, and A4. The
edges and the vertices are related by

— —_—
Rs = Ri + A1 Ay, Ry = Re + AA. (53)

Note that in case no particle intersects the rectangle, there is no need to develop a sy
procedure to generate a mesh.

Strategy. The approach consists in generating a broken closedliae}, U R, U Rz U
R4 such that

e Ris not too far fromR;
e Ris biperiodic: it verifies

. . —s ~ N —s
R; = R+ AjAs, Rs = R+ AxAg; (54)
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o there is no contact betwedhand the particles.

Such a “broken rectangle” can be used to generate a biperiodic mesh compatible witf
particle distribution. The torus-type topology is then achieved by one-to-one identificati
of the vertices of the 2 horizontal sideRy(and Rs), the 2 vertical sidesR, andR4), and
the identification of the 4 corners.

Construction ofR. In order to generat®;, a subwindow aroundR; is defined. The
height of this subwindowV is a few times (typically 10) the diameter of the particMsis
filled with the actual particles by periodicity, but the particles which intersect the bounde
of W are suppressed. The next step is then to choose a Bpiimt W inm)ﬂuid part
(outside the particles), close fg, the left end ofR;. We defineB, = B; + A; A2. A mesh
of W minus the remaining particles, such tiitand B, belong to the set of vertices, is
then generated in a classical way. The IRewill be defined as a connection froBy to B,
through the mesh.

In order to build this broken line we propose the following approach, which could |
applied to 3D problems: a scalar figlds introduced, solution of the Laplace equation in
W, with uniform Dirichlet boundary conditions on each particle. We take the prescrib
value on the boundary of a particle proportional to the height of its center (the height ori
is set atR;). A similar condition is taken for the horizontal sideswf, and homogeneous
Neuman B.C. are prescribed on the lateral parts. Let us now consider the subset of triar
intersecting the sdk; 6(x) =0(B;) =6(By)}. Itis a submesh of the initial one, it contains
B andB,, and either one of its top or bottom boundaries can be chosBa, asovided it
is connected t@; and B,.

A~simiI§1r awch is gsed to builﬁ;z.)The two remaining broke~n linelR, are dejined
by R3=R;+ AjA4 and Ry = Ry + Az A;. The final broken frameR is thenR; U Ry U
ﬁg @) |i4

Remark. There are otherwaysto generate a broken line through a domain with obstac
Three advantages of the presented method are:

e In case of a non-uniform mesh, the “local” meshes are built with the san
h-distribution, so that the broken line integrates smoothly into the final non-uniform me:

e This method is robust, even if the solid volume fraction is high (up t1868).

e Although it has not yet been implemented for 3D meshes, this method is af
licable to them, mainly because the piecewise linear surface is defined implicitly as
boundary of a mesh, and therefore is not difficult to build.

4. PARTICLE “CONTACTS”

4.1. Introduction

This section addresses the problem encountered when two or more particles con
near contact. Conceptually, such a situation can be handled in the framework which
been presented, provided the finer zone between the particles is refined. Indeed, lubric
theory ensures that the interparticle distances will not vanish. Numerical experiments bz
on local mesh refinements (see Hu [7]) show good stability and robustness proper
Nevertheless, this approach has some drawbacks:

e Itisimpossible to predic priori the number of necessary refinement steps, so th
there is no control on computational costs, nor on memory requirements.
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e The time step has to be controlled and may have to be reduced drastically in ot
to avoid overlapping of particles.

e The high non-uniformity of the computational mesh is harmful to the conditionin
of the numerical system to solve.

4.2. Technical Treatment

4.2.1. Principle of the method.In this section, a “cut off"-like technique is presented.
It ensures numerical stability at almost no computational cost. Although this technic
seems to act as if particle roughness were taken into account, it is not based on any pi
physical modeling. Some remarks on the underlying physics will be given in the ne
section.

LetY represent the particle configuration

Y =(Gy,...,Gn, b1, ...,00). (55)

The distance between particleand] is denoted by B, which can be considered a function
of Y. In periodic domains, the distance between 2 particles is of course the minimumnr
distances between their “images” obtained by periodicity. The set of feasible states (parti
do not touch) is

A={Y= (G0N e RN st.Dj >0,Vi, }. (56)

Itis clearthatany € A can be obtained in numerical simulations, even those with arbitrari
small O;’s. Moreover, if the time step is too large, some particles might even overlap. .
we want to avoid the latter configurations, we propose to replace any probleYnhtic
another configuratioly, in

A ={Y =(Gi, 6)1=i=n e R3N s.t. O; > e, Vi, j}, (57)

wheree > 0 is a fixed parameter, any is close toY in a certain sense. The choice of
¢ is conditioned by numerical considerations: as a mesh has to be generated in the
part, it is necessary to keep finite interparticle distances. The valaésahe prescribed
lower bound of interparticle distances. This value will of course affect the computed flc
but numerical tests showed that it exerts no significant influence as soon as it drops b
a certain limit. In all computations, the value efhas been set to 5% of the particle
diameter.

4.2.2. Numerical implementationIn this section we present a numerical method to com
pute areasonab from a givenY, i.e., to transform a “bad” situationn¢ A, onto a “good”
oneY, € A.. As we wanty, to be close t¢, it would be natural to use a projection ontg.
Unfortunately, as\. is not convex, such a projection cannot be defined properly. We thel
fore propose a heuristic method to compWte based on the minimizing of a functional.
Let W be the real functional defined, for any configuratioe RN, by

w(Y) = (DY) — ) (58)

Dij <&

The setA, is exactly{Y s.t. W (Y) =0}. Y, is obtained by performing a steepest descen
algorithm onw, starting fromy.
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At each step of the steepest descent algorithm, all the distances between particles
be estimated with accuracy, which can be very costly especially if particles are not circ
In order to reduce the number of calls of this procedure, the whole domain is covered v
a coarse regular grid (whose step is larger than the diameter of the parfic)e Each
particle is located in this grid, and only the couples belonging to neighbouring cells :
tested. In case of periodic calculations, also the “ghost” particles, not represented in
computational mesh, must be taken into account.

This method has shown its robustness in numerical tests. It makes possible long-
simulations with no risk of overlapping. Furthermore, as the minimizing procedure is p
formed on the space of all particle positions, it can handle close packed arrangements, w
some particles may be in contact with 6 other ones.

4.3. Further Prospects: Lubrication Models

In particular situations, e.g., when some particles are sticking to a wall (particle laying
the bottom of a container), or more generally when the solid phase is high, the lubricat
forces may play a significant role on the overall behaviour of the mixture (see Dratler ¢
Schowalter [3] for the influence of near contact dynamics on the global viscosity of susp
sions). In [13], we introduced a many-body lubrication model based on a first order asyr
totic expansion of the lubrication flow between two spheres developed byeKah[10].
Although this method reproduces the physical behaviour properly in very simple ca
(e.g., single particle approaching the bottom of a container under the action of gravity),
will not present in this paper any many-body simulation based on the coupling of the t
approaches, because we are unable to define a non-trivial test case which would illus
the accuracy of the coupled approach. Indeed, interparticle distances are very difficu
measure experimentally. Furthermore, when the interparticle gap is too thin, it may lea
film rupture, which is up to now impossible to take into account with such models.

5. NUMERICAL EXPERIMENTS

We present here 4 sets of simulations. As this direct approachisintendedto leadtoab
understanding of the global behaviour of “infinite” mixtures, a special attention will be pa
to the influence of the biperiodic model on the computed flow (sets Il and I11). Situations ¢
characterized by the solid volume fractidnand the particle Reynolds number. The latter
is defined by Rg= pUd/u, whereU is the maximum modulus of the fluid velocity, and
d is the particle diameter. The time step is controlled automatically in all the simulatior
The control is based on a particle CFL condition. It is chosen so that the maximum mot
of a particle between two steps is its diameter multiplied by a constant factor 0.3.

5.1. Non-circular Particles

The first set of pictures illustrates the suitability of the method to general situations: 1
motion of 1000 ellipses of different sizes is computed. The volume fraction is argdo@,1
and the particle Reynolds number is 10.

Fig. 3a. Boundary of the mesh (boundary of the periodic windopatrticles).
Fig. 3b. Mesh corresponding to the selected zone in Fig. 3a.
Fig. 4. Computed velocity field (detail).
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FIG. 3. (a) Mesh boundary. (b) Mesh (detail).

5.2. Periodic Model

This set of picturesillustrates the problem of the biperiodic window size. Figures 5a anc
correspond to a 2000 particles computation. The number of nodes of the triangulatio
about 1. The solid volume fractio is 15/100, the periodic length is = 6, and Rg = 5.
We will refer to it as the large window simulation (LW). In Fig. 5a, only the particle velocitie
are represented. Although it does not represent a continuous field, it gives a good over
of the global motion of the mixture. Figure 5b shows the fluid velocity field in the zor
delimited by the square in Fig. 5a. The field which is represented is of course not biperio
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FIG. 4. Velocity field (detail).
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The next pictures correspond to the very same physical situation: the size of the partic
the solid fraction®, the fluid properties, and the body forces are unchanged. The or
difference is the size of the window, which is reduced to the zoom represented in
previous figure (4 times smalldr,= 1.5). The number of particles is now 2006 = 125.
We will call it the small window simulation (SW).

The influence of the biperiodicity constraint already appears in the velocitiy fiel
(Figs. 5a and 6a). The large structures observed in the LW simulation can obviously
develop in the SW.

The better way to estimate the suitability of the model would consist in extracting
subdomain 5 x 1.5 out of the large domain % 6 and compare the behaviour of the
mixture to the behaviour obtained with theésXx 1.5 direct biperiodic simulation. Such a
comparison cannot be done straightforwardly, becakise likely to vary in the artificial
subdomain. For example, the kinetic energy of the solid phase will undergo a jump as s
as a new particle comes into the subdomain. This problem should be overcome in the fu
either by introducing more sophisticated filters which take into account the variatidns of
or by increasing the number of particles.

We will limit here the analysis of those simulations to some various kinds of kinetic ener
which can be associated with particle velocities. For both simulations, we represent the |
kinetic energy of the solid phadg;, the kinetic energy associated with the mean velocit
of the solid phas&macro and the kinetic energy of a single partiég,ge Those quantities
are scaled in such a way that a constant and uniform motion of the set of particles wc
lead to three identical values. Those functions of time are represented in Figs. 7a and

First, an important remark can be made for both simulations. There is a huge rela
difference betweelk,; and Enacro, Which expresses the fact that the motion is completel
different from a uniform translation. The quantly,; — EneanCan be seen as a temperature
of the solid phase. In the present situation, one can consider that most of the potential er
deteriorates into viscous dissipation and particle temperature.

Considering now the differences between the two graphs, it is clear that the total kin
energy behaves more steadily in the LW simulation, as the next set of simulations \
confirm.

Finally, the energetic history of a single particle seems to be dominated by character
frequencies varying from a case to the other. Indeed, high frequencies which domina
SW are still observable in LW but are no longer predominating. A systematic study of tl
phenomenon still has to be performed.

5.3. Global Steady State

The next set of figures addresses the following question: Does the mean flow bet
steadily if the window size is large enough? A given set of physical parameters are cho
and three simulations are performed on different window sizes. The vakiraé14/100
and the particle Reynolds number isRe4. The evolution of average- andz-velocities
of the fluid and the particles is represented in Figs. 8a—8c. Figures 9a—9c show the ti
derivatives of the different energies: kinetic, potential, dissipated, and the sum of them
The singularities appearing in the kinetic energy curve are purely numerical; they corresp
to time steps at which a remeshing has been performed. A better remeshing-projec
scheme has to be developed. Nevertheless, those singularities seem to be localized in
and they do not prevent us from analyzing the kinetic energy evolution.
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The first observation lies in the time averaged quantities. All quantities oscillate aroun
constant value which does not depend significantly on the window size. The small wind
simulation appears to be sufficient to predict the mean sedimentation velocity for exam
provided a time average is performed.
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Second, the flow seems to stabilize globally as the periodic length is increasing. Ne
theless, it is to be noticed that, even for the highest number of partidlesg00), some
fluctuations can still be observed at some times of the computation (see, for example
time derivative of kinetic energy faX =800 around timé = 50). It must be added that in
all the long-time simulations we performed, such phenomena occurred. Indeed, for I
periodic lengths, average quantities are almost always constant, but undergo high pe
bations at certain times. Those perturbations can be associated with a special pattern
mixture flow: a large eddy develops all over the computational domain, increasing glo
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kinetic energy. This phenomenon might be due to the biperiodicity of the domain. Inde
as soon as many particles constitute an aggregate whose size is close to the vertical pe
length, this aggregate has to be considered with all its periodic images: it acts like a ver
chain of macro-bodies. No significant force is exerted by the fluid on such a vertical che
so that the mean velocity of the aggregate increases, inducing a macro-eddy on the
putational domain. In real flows, it is known that such a vertical configuration is not stab
Any vertical chain tends to collapse before it reaches a high velocity. To the contrary, in «
computations, the vertical chaisi stable, because the periodicity prevents the chain fror
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collapsing. Some numerical tests still have to be performed to verify this explanation. |
is valid, those phenomena should disappear as soon as the gravity acts in a direction v
is no longer a direction of periodicity.

5.4. Global Interaction Force

As a first step toward general models, we shall finally present an example of what
biperiodic direct approach can provide. We will concentrate on a single relation on wh
most two-phase macroscopic models are based, namely the dependency between inter
force and relative velocity.

5.4.1 Space-time averagingThe fluid particle interaction force is not computed ex-
plicitly in the algorithm. In order to avoid extra computations of boundary integrals, v
propose here a simple way to estimate the mean interaction force and to relate it with
mean relative velocity.

Let us consider a given situation (size of the particles, densities, viscosity, solid fractic
Let V; be the mean (space averaged) vertical velocity of the fMidhe mean vertical
velocity of the particles (average over all of them), d&hdhe mean force exerted by the
fluid per particle. Our purpose in this section is to investigate the relation between
time-averaged quantitie{d;:_) and(V — Vi).

For any value of the gravity modulyg|, the mean vertical velocity7 of the parti-
cles (average over all of them) can be represented as a function of time, as in the s
Figs. 8a—8c. As we previously noticed, after a transitory phase, this quantity oscilla
around a constant value. This function of time can be averaged over a few periods of o
lation to give a good representation of the mean velo((k?ty Besides, when the system has
reached a pseudo steady state, the kinetic energy oscillates around a constant value, <
hydrodynamic forces balance exactly (up to oscillating terms) the weight of the particl
which is known,

(F) = —mg. (59)
Furthermore, as the mean vertical velocity of the mixture is zero,
(V) + (1— ) (Vy) =0, (60)

so that the mean relative velocity can be expressed

- 1 —
V= Vi) = =5 V). (61)

5.4.2. Numerical simulations.Using Egs. (59) and (61), we can now associate with an
long-time simulation (for whichg| and (V) are known) a point in theslative velocity—
interaction forceplane. We present here 3 sets of simulations, corresponding to 3 differ
values ofd: 3.10°3,0.112, and ®8(N =1, N =40, andN = 100, respectively).

The periodic length. =1 is the same for all simulations, the particle radius is 0.03
and the viscosity of the fluid is.50~%. The particle Reynolds number depends of cours
on the prescribed gravity. It varies between 5 and 360. Figures 10a—10c show the velc
fields corresponding to Re=5, Re, = 140, and Rg=360. Although it is questionable to
represent non-divergence free fields, we chose to represent the fluid velocity relative tc
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mesh velocity, i.e.y — ¢, because they illustrate more properly the differences between t
Stokes flow (Rg=>5) and the Navier-Stokes flows (Re 140 and Rg = 360).
For each set of simulation (i.e., for each valuae)f the curve

V — Vi = (F) (62)

is plotted in alog—log scale (see Fig. 11). As indicated in the previous seﬂﬁprepresents
an interaction force per particle. Figure 11 therefore shows that the force does not def
on the mean relative velocity only, but also on the solid fractiondAacreases, the force
corresponding to a given velocity increases as well. It can be explained by considel
the type of the flow around the particles. In the case of a dilute suspension, the f
around a particle is close to what it would be with a single particle in a infinite domain
fluid. As @ reaches high values, the solid phase acts more like a porous medium: loc:
the predominating phenomenon is a Poiseuille-like flow through inter-particle gaps. T
latter phenomenon induces high viscous forces, which explains the fact that the fc
corresponding to concentrated suspensii=(0.28, N =100 in Fig. 11) can be one order
of magnitude higher than the force corresponding to dilute suspenBigr)(003 N =1).

Those curves confirm the non-suitability of trivial interaction models (models based
interaction forces for a single particle) as soon as the suspension can no longer be consi
dilute.

Remark. The relation which we obtain numerically results from a time averaging ov:
a characteristic tim&. It is therefore relevant only to model macroscopic phenomena wif
characteristic time much greater than
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6. CONCLUSION

We presented a method to simulate the motion of particles in a viscous fluid. The m
features of this method are:

e The advection term in the momentum equation for the fluid is taken into accot
by a method of characteristics. The time-discretized problem is then a generalized St
problem. As the resulting system is symmetric, efficient methods like the preconditior
conjugate gradient method can be used to compute velocity and pressure.

e This method is applicable to simulations in biperiodic domains. An extra unknov
was introduced in order to take into account the vertical volume conservation. This n
unknown plays the role of an extra pressure gradient, and it was proved it is a Lagra
multiplier for the vertical conservation constraint.

e A biperiodic mesh is built each time it is needed. As the computational mesh
biperiodic, periodic boundary conditions are simply prescribed by working on suitat
finite element spaces.

e Numerical problems usually encountered in near-contact situations are suppre:
by using a simple “cut-off’-like technique.

This method exhibits good stability properties, which permits long-time simulations
many-body motions (up to 5000 particles were simulated with this method). It presents g
agreement with results obtained by other approaches. Furthermore, the computed er
balance reproduces a physically admissible behaviour. As experiments deal with sphe
particles only (3D flow), strict validations based on them are unfortunately not possible
this 2D model.
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The new capability to handle biperiodic Navier—Stokes flows makes it possible to stt

the long-time behaviour of mixtures with constant solid volume fraction, without bounda
effects. Although the limits of biperiodic models still have to be established with more act

ra

cy, this tool provides a promising way to investigate fluid-particle interaction phenome
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